Analyses and Forecast for COVID-19 epidemic in India

Abstract

Background: The coronavirus pandemic (COVID-19) is causing a havoc globally, exacerbated by the newly discovered SARS-CoV-2 virus. Due to its high population density, India is one of the most badly effected countries from the first wave of COVID-19. Therefore, it is extremely necessary to accurately predict the state-wise and overall dynamics of COVID-19 to get the effective and efficient organization of resources across India.
Methods: In this study, the dynamics of COVID-19 in India and several of its selected states with different demographic structures were analyzed using the SEIRD epidemiological model. The basic reproductive ratio R0 was systemically estimated to predict the dynamics of the temporal progression of COVID-19 in India and eight of its states, Andhra Pradesh, Chhattisgarh, Delhi, Gujarat, Madhya Pradesh, Maharashtra, Tamil Nadu, and Uttar Pradesh.
Results: For India, the SEIRD model calculations show that the peak of infection is expected to appear around the middle of October, 2020. Furthermore, we compared the model scenario to a Gaussian fit of the daily infected cases and obtained similar results. The early imposition of a nation-wide lockdown has reduced the number of infected cases but delayed the appearance of the infection peak significantly.
Conclusion: After comparing our calculations using India’s data to the real life dynamics observed in Italy and Russia, we can conclude that the SEIRD model can predict the dynamics of COVID-19 with sufficient accuracy.

Publication
Quant. Biol.
Rudra Banerjee
Rudra Banerjee
Assistant Professor, Computational Condensed Matter

My research interests include Computational Physics, disordered materials and thermodynamics.